

Cybersecure GNSS for Autonomous Mobility

ESA NAVISP-EL2-109 CECIL

Final Presentation 09/10/2025

Dr. Bertalan Eged, CEO

Sagax Communications, Ltd.

<u>www.sagaxcommunications.com</u> <u>www.linkedin.com/company/sagaxcommunications</u>

Agenda

- Company introduction
- Problem statement and mitigation
- System architecture HW and SW
- Project introduction WBS and Timing
- Designed and manufactured components
- Laboratory and field validation and demo (video)
- Summary of experiences
- Future outlook

Company introduction: fields of play

Aerospace and Defense

Test and Measurement

Scientific Research

Signal and Communications Intelligence

Spectrum monitoring systems and radiated measurements

High channel count transceivers and antenna systems

Sagax Communications deliver advanced radio electronic solutions with mature mainstream commercial technology.

Subject matter expertise:

- Electromagnetic simulation and antenna element and array design
- Analog signal conditioning with high dynamic range multiple source and sink analog connectivity
- Wide-bandwidth and high-frequency multi-channel conversion of analog signals (ADC/DAC)
- High-throughput data acquisition and generation with record and playback (RnP)
- Off-line and real-time digital signal processing with parallel processing resources (GPP, GPU, FPGA)

System integration

Stand-alone operation

Integrated operation

Integrated systems

Receiver and test systems integration From man-portable receiver to integrated site With direction finding and record-playback-delay

Portable

Connected

Extended

Work-post

Operation-site

Problem statement

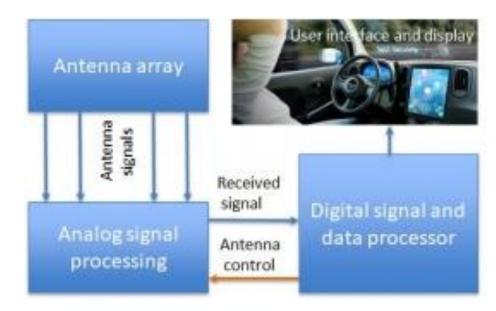
- Industry and society have embraced and depend on the space/satellite based navigation systems. (GNSS)
- These systems are target of electromagnetic and cyber-attacks which are recently proved to be existing threat to our community.
- Jamming and spoofing of GNSS systems are real danger and can block lot of mission critical infrastructure and day by day activity

GPS

Glonass

Galileo

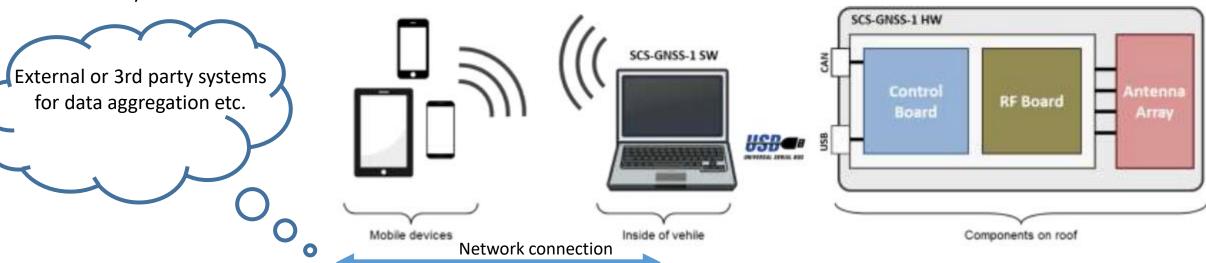
BeiDou

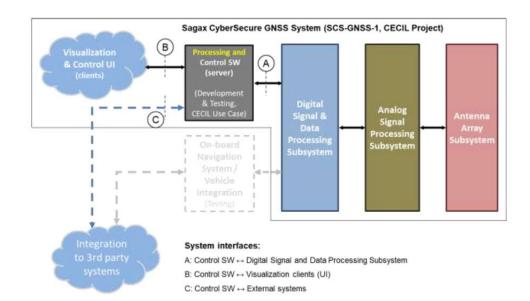


Spoofing mitigation in the antenna domain

The physical source of the signal is different for original and spoofing signal

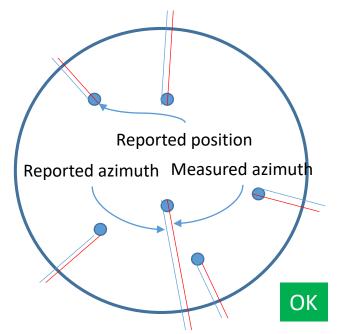
GNSS Spoofing Mitigation technic based on special antenna sensor

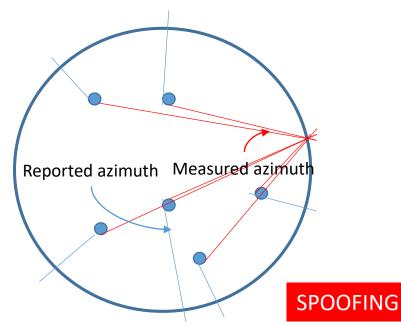



ESA NAVISP-EL2-109 CECIL

CECIL System Architecture

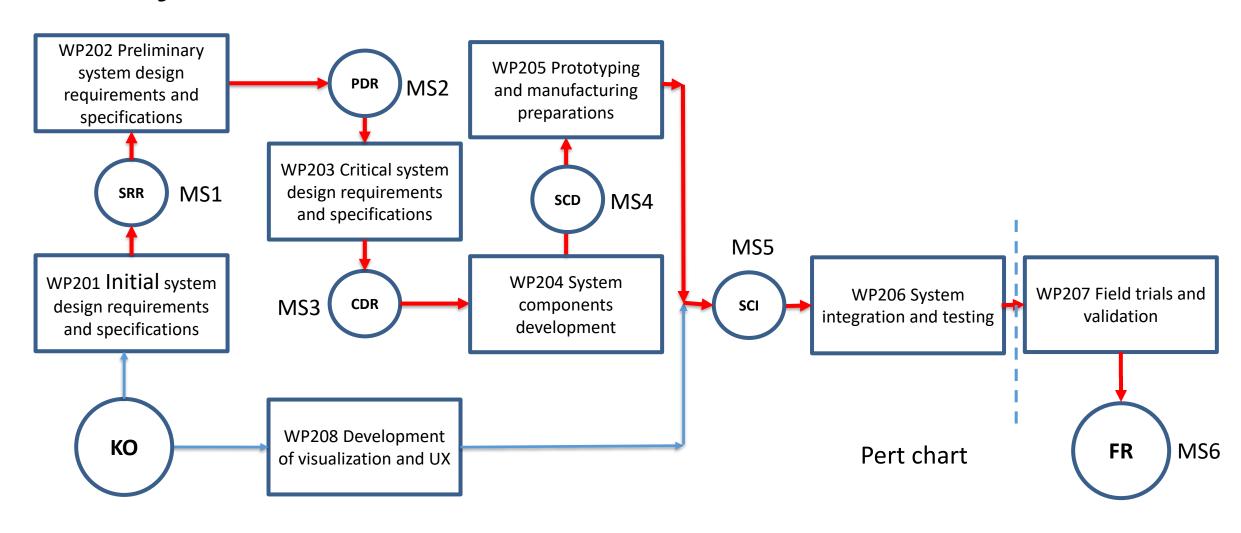
- CECIL consists of a 4 antenna array and connected analogto digital, processing and control board
- The control board is connected to and external computer running the data processing, visualization and external connectivity software

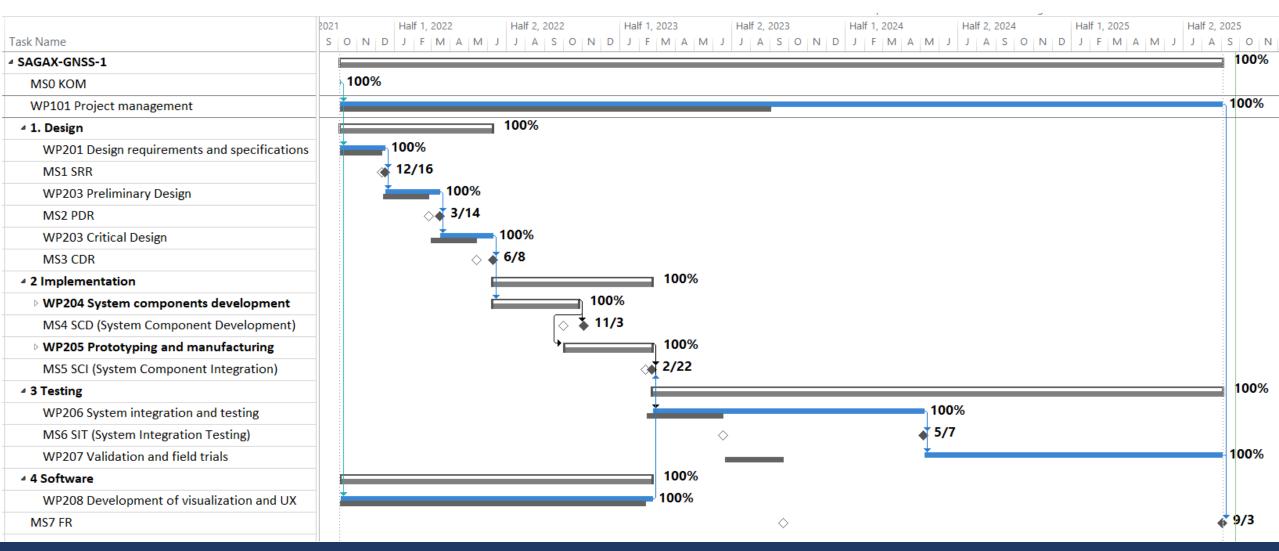




CECIL software functions

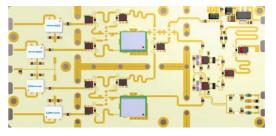
- Calculating the reported azimuth of the reported satellite position
- Compare the reported and measured azimuth by the sensor
- Non-aligned signals where azimuths different are likely spoofed
- Calculate the alignment level and compare the preset thresholds





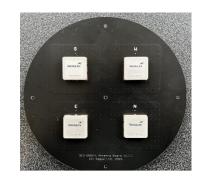
Project outline: WBS on Pert chart

Project outline: tracking-Gantt



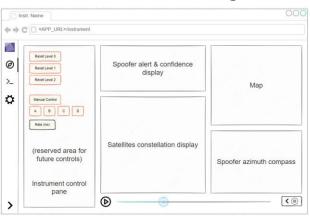
Manufacturing and integration

Antenna board



Analog/RF board

Digital board


Antenna and sensor assembly

Circuits box

UI software design

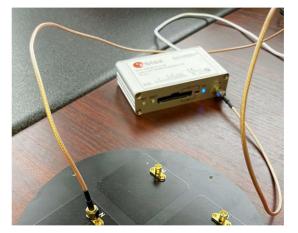
Control and UI software

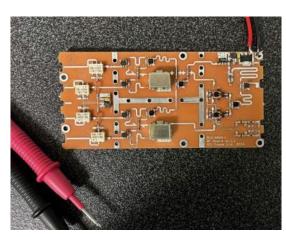
Laboratory and field validation

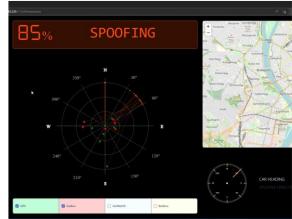
Lab validation

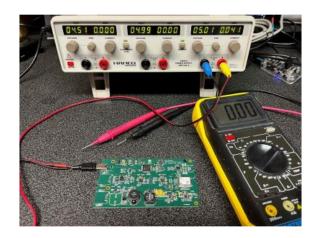
Field validation

Test drive demos




EMC Lab ≠ Antenna Lab




Laboratory test and integration

- Evaluation of the Production of the Components
 - Antenna Boards
 - Analog RF Boards
 - Control Boards
 - Aluminum cages
 - Control and visualization software
- Integrate the overall system raedy for field validation and trials

Testing with recorded signals

OPEN INNOVATION LAB NAVISP-EL3-027

https://navisp.esa.int/project/details/261/show

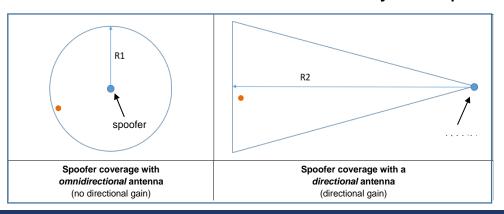
- 4ch coherent record and playback system by NI was used
- Recorded signals during the 2024 Jammertest (Norway) with 4 antennas
- Phase coherent playback of the 4 antenna signal connected to the input
- Spoofer well detected [©]

Field validation tests and demonstration

- The scope and criteria
 - To test and validate the entire prototype system developed in the SCS-GNSS-1 project in order to ascertain its behavior in a quasireal life environment
 - Learn about its potential shortcomings in various scenarios.
 - The validation has to show weather if the system fulfils the *User Requirements*

- Types and number of test cases
 - Under static conditions in order to determine certain operation parameters, like spoofer range, and the required minimum interaction time.
 - Several dynamic real-life
 operating environments with
 moving vehicle resulting in
 pass/fail results and/or likelihoods
 on missed detections and false
 alarms.

The spoofer device and antennas



Omni- and directional antenna used by the spoofer

Device under test installation

Passenger car used during the test

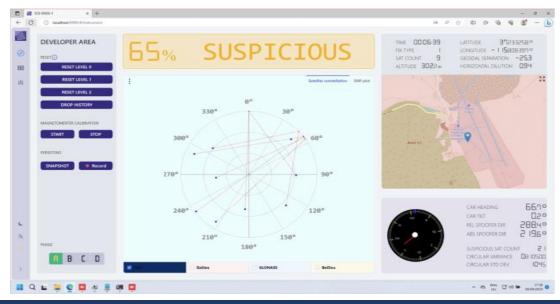
Antenna array on top of the car

Software on laptop near dashboard

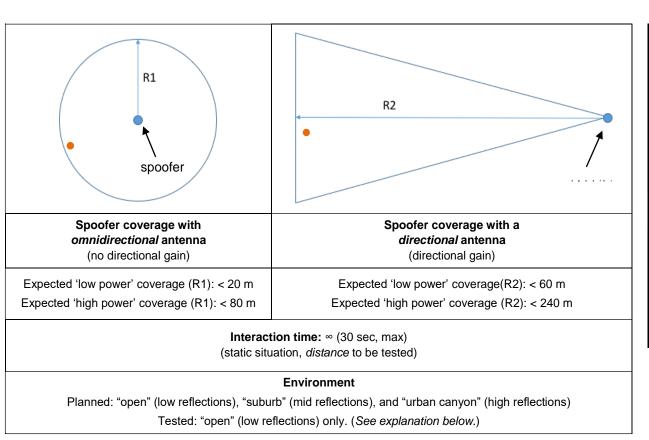
Test drives in different environments

Rural

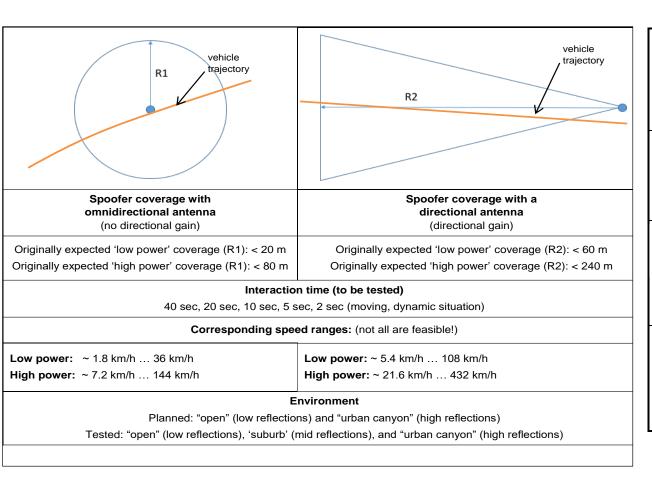
Urban



Antenna on top of the car Computer next to dashboard

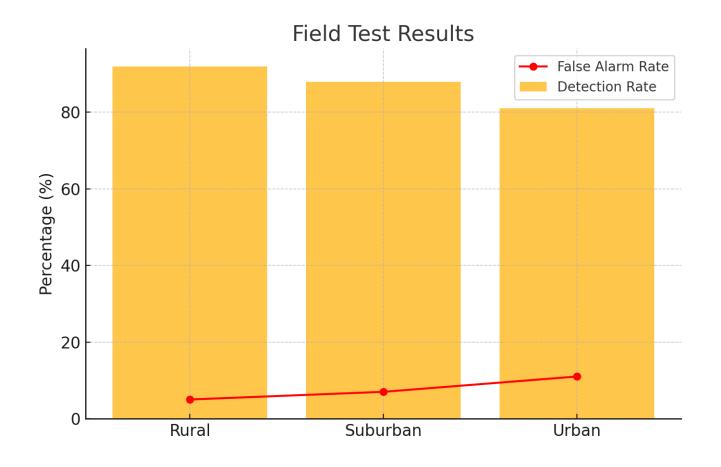


With control software running


Static test results

The sensitivity and detection speed of our SCS-GNSS1 system in a close-to-the-ideal open field (low reflection) environment									
The can lock to a typical spoofer in a distance less than 200 m. (SR#5) The system detect a typical spoofer and give an initial azimuth angle in not more than 5 sec (SR#5)		Spoofer antenna							
		Omnidirectional		Directed					
Spoofer Power	Low (spoofer power)	Can detect in less than 5 sec:	40 m	Can detect in less than 5 sec:	60 m				
		Max detection distance (detection in 30 sec):	120 m	Max detection distance (detection in 30 sec):	180 m				
	Boosted with +10 dB	Can detect in less than 5 sec:	100150 m	Can detect in less than 5 sec:	200250 m				
		Max detection distance (detection in 30 sec):	250 m	Max detection distance (detection in 30 sec):	250300 m				

Dynamic results



Environment	Spoofer (GPS)	Spoofer location	Driving speed	SCS-GNSS-1 performance		Risk of false alarms	Fine tuning of the algorithm
				Detection rate	False alarm rate		(i.e. modifying the default thresholds)
Rural / Open sky	HackRF One + 30 dB amp. + omnidir. ant	Road margin (Passing by 12 m)	Up to 110 km/h	> 95%	< 5 %	Low	Decision sensitivity can be significantly increased by lowering the alert decision threshold
Suburb	HackRF One + 30 dB amp.	35 m away from the road side. (Garden, balcony or window of a house.)	Up to 45 km/h	80-100%	< 20 %	Low /Mid	Default thresholds
	omnidir. ant	,			<10 %		slightly increased
Urban canyon	HackRF One + 30 dB amp.	Betw. high buildings, at ground level. (~ 20m from road	Up to 40 km/h	~ 80 %	< 20 %	High	slightly increased
	+ omnidir. ant	and buildings)			<10 %		increased

Field test results in different environment

Summary of experiences

Environment counts

In urban canyon, the situation is very unpredictable, results are volatile, and hardly repeatable, blind spots for missing detections and hot spots for fake alarms are challenging phenomena.

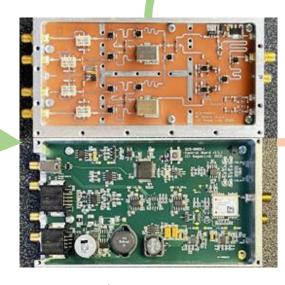
Power counts

A typical low-cost, easily available spoofers (like maker-style SDR based spoofers just as the HackRF one) usually have low power to that makes the detection (but also the spoofing) difficult from a realistic, larger distance. Even relatively simple power amplifiers (e.g. 10..30 dB ones) significantly increase the coverage

Trade-off between Sensitivity and False Alarms

In all scenarios the fine tuning of the 'sensitivity' (that is, the decision making threshold) have been possible. It can be automatized based on the vehicle speed and location data.

Future outlook


https://navisp.esa.int/project/details/327/show

Interference Testbed NAVISP-EL3-032

https://navisp.esa.int/project/details/261/show

OPEN LAB NAVISP-EL3-027

CPRA Antenna

MIL-grade sensor

**** | MADE IN

EUROPE

Invented, designed and

Increased
European resilience
autonomy
in PNT

Dual PCBA w/ discret components Multi-chip module

Summary

- Problem: GNSS spoofing which might be higher threat than jamming
- Mitigation: physical/antenna domain sensor
- Project: designed, manufactured, tested, validated and field demonstrated
- Further: mobile or static deployment and further developments

Dr. Bertalan Eged, CEO

Sagax Communications, Ltd.

Please contact:

<u>bertalan.eged@sagaxcommunications.com</u> <u>www.linkedin.com/company/sagaxcommunications</u>